xt5tsvyi5cy64017640716.png
2 G; D9 V8 D6 a Z9 \. [% P点击上方蓝字关注我们
d. ^% p1 I% x: I
jfhixiz1nrx64017640816.png
3 ~3 r/ }+ E' ^& o
注明:此推文来自公众号Lvy的口袋,欢迎大家关注Lvy小姐姐公众号~ 多种算法对比图是常用的科研绘图,你知道几种合适的绘图样式呢?
2 [" q( _0 H2 Q) b& d
/ U. @5 h5 _( p: c
3xghylnxqx064017640916.png
3 ~- d% m% x- b$ R
2 A* f+ t( J# v Y
( _$ A7 R. p- I8 i6 ~0 v1.真实值和预测值展示图
5 T% k+ O6 _+ L3 J X0 \
, I @* C- H, Z2 Z _
jym4eg5a2cd64017641016.png
. J7 ^) e V( M4 Q
Tips:数据比较多、算法多的适合比较难看出实际的效果5 _- z a" x3 a0 w
数据就是各个算法预测值和真实值数据(工具箱直接导出)6 V: E z* K- X W. Y. T8 E0 m$ z2 \
data_pre_all=[]; %记录预测数据load(' 多元线性回归 17_Dec_11_34_33 train_result_train_vaild_test.mat')data1=data_Oriny_prey.y_test_predict;data_pre_all=[data_pre_all,data1];data_true=data_Oriny_prey.test_y;load('SSA麻雀搜索算法 随机森林回归 17_Dec_11_35_55 train_result_train_vaild_test.mat')data2=data_Oriny_prey.y_test_predict;data_pre_all=[data_pre_all,data2];load(' SVM-RF回归 17_Dec_11_37_18 train_result_train_vaild_test.mat')data3=data_Oriny_prey.y_test_predict;data_pre_all=[data_pre_all,data3];load(' MLP回归 17_Dec_11_38_31 train_result_train_vaild_test.mat')data4=data_Oriny_prey.y_test_predict;data_pre_all=[data_pre_all,data4];load(' LSTM回归 17_Dec_11_40_29 train_result_train_vaild_test.mat')data5=data_Oriny_prey.y_test_predict;data_pre_all=[data_pre_all,data5];str={'真实值','多元线性回归','SSA麻雀搜索算法 随机森林回归','SVM-RF回归' ,'MLP回归','LSTM回归'};figure('Units', 'pixels', ... 'Position', [300 300 860 375]);plot(data_true,'--*') hold onfor i=1:size(data_pre_all,2) plot(data_pre_all(:,i)) hold on endlegend(str)set (gca,"FontSize",12,'LineWidth',1.2)box offlegend Box off
& L6 F9 I8 s& n& a+ b7 z
. P+ C# n( v9 W7 p4 p% F, l
' \ b) D6 b& m0 |
9 c) q/ t5 K( Y: b1 P2.误差柱状对比图
3 m+ J) f* u0 l0 n& P; T2 {
525gqx1cvaf64017641116.png
: h9 f6 P8 n% ^( q: M6 {
Tips:建议选取量纲差别不大的误差衡量指标,不然可能会有点丑
. z+ N6 @- y" Z4 E" bTest_all=[];for j=1:size(data_pre_all,2) y_test_predict=data_pre_all(:,j); test_y=data_true; test_MAE=sum(abs(y_test_predict-test_y))/length(test_y) ; test_MAPE=sum(abs((y_test_predict-test_y)./test_y))/length(test_y); test_MSE=(sum(((y_test_predict-test_y)).^2)/length(test_y)); test_RMSE=sqrt(sum(((y_test_predict-test_y)).^2)/length(test_y)); test_R2= 1 - (norm(test_y - y_test_predict)^2 / norm(test_y - mean(test_y))^2); Test_all=[Test_all;test_MAE test_MAPE test_MSE test_RMSE test_R2];end%%str={'真实值','多元线性回归','SSA麻雀搜索算法 随机森林回归','SVM-RF回归' ,'MLP回归','LSTM回归'};str1=str(2:end);str2={'MAE','MAPE','MSE','RMSE','R2'};data_out=array2table(Test_all);data_out.Properties.VariableNames=str2;data_out.Properties.RowNames=str1;disp(data_out)%% 柱状图 MAE MAPE RMSE 柱状图适合量纲差别不大的color= [0.1569 0.4706 0.7098 0.6039 0.7882 0.8588 0.9725 0.6745 0.5490 0.8549 0.9373 0.8275 0.7451 0.7216 0.8627 0.7843 0.1412 0.1373 1.0000 0.5333 0.5176 0.5569 0.8118 0.7882 1.0000 0.5333 0.5176];figure('Units', 'pixels', ... 'Position', [300 300 660 375]);plot_data_t=Test_all(:,[1,2,4])';b=bar(plot_data_t,0.8);hold on5 v ^; @: U* n% c
for i = 1 : size(plot_data_t,2) x_data(:, i) = b(i).XEndPoints'; end
% l, L M S- o% b& D* R6 _% afor i =1:size(plot_data_t,2)b(i).FaceColor = color(i,:);b(i).EdgeColor=[0.6353 0.6314 0.6431];b(i).LineWidth=1.2;end
9 d0 @4 E8 k; \# V% _" b. F6 Tfor i = 1 : size(plot_data_t,1)-1 xilnk=(x_data(i, end)+ x_data(i+1, 1))/2; b1=xline(xilnk,'--','LineWidth',1.2); hold onend
( |% o8 {0 }' i( ^ax=gca;legend(b,str1,'Location','best')ax.XTickLabels ={'MAE', 'MAPE', 'RMSE'};set(gca,"FontSize",12,"LineWidth",2)box offlegend box off/ f4 ^1 p6 ?, U1 G
4 [7 U% l' z4 J" L
8 L* T) Q" M+ P; n, X
8 x8 P( t6 K0 _4 S3 D( j; p/ [, m4 J# d6 p7 w" ~+ ^* e3 k
3.误差散点对比图" s s' v+ w) A2 }% |6 ?
se1nuhcgwaz64017641216.png
0 D4 B0 _' G# a1 x- v/ s& k0 {, ~
Tips:可以任意选择两个误差衡量维度7 [1 M( i6 E1 ?0 U( o" ]2 I
figureplot_data_t1=Test_all(:,[1,5])';MarkerType={'s','o','pentagram','^','v'};for i = 1 : size(plot_data_t1,2) scatter(plot_data_t1(1,i),plot_data_t1(2,i),120,MarkerType{i},"filled") hold onendset(gca,"FontSize",12,"LineWidth",2)box offlegend box offlegend(str1,'Location','best')xlabel('MAE')ylabel('R2')grid on/ w) p+ h4 }( R
; Z% C8 X% r6 ?. h9 P+ S' I2 E0 Z) E& s
- s' | F$ v* ?0 i( g4 \; Q
4.误差密度散点图5 K) N' }* K1 Z; M4 o
s5qhpzrcjxv64017641316.png
1 g- {& N% `# ~- r; c) J2 x8 x
# E9 t* B) S" u F X! ? Y4 L
figure('Units', 'pixels', ... 'Position', [150 150 920 500]);for i=1:5 subplot(2,3,i) n=50; X=double(data_true); Y=double(data_pre_all(:,i)); M=polyfit(X,Y,1); Y1=polyval(M,X); XList=linspace(min(X),max(X),n); YList=linspace(min(Y),max(Y),n); [XMesh,YMesh]=meshgrid(XList,YList); F=ksdensity([X,Y],[XMesh(:),YMesh(:)]); ZMesh=reshape(F,size(XMesh)); H=interp2(double(XMesh),double(YMesh),double(ZMesh),X,Y); scatter(data_true,data_pre_all(:,i),35,'filled','CData',H,'MarkerFaceAlpha',.5); hold on plot(X(1:10:end),Y1(1:10:end),'--','LineWidth',1.2) hold on str_label=[str1{1,i},' ','R2=',num2str(Test_all(i,end))]; title(str_label) set(gca,"FontSize",10,"LineWidth",1.5) xlabel('true') ylabel('predict')end
% O4 P0 O+ m8 o g; @# m# |. K' z: O, e( K# p( m
8 @# ?/ w) c# K3 |& T
7 k! A7 u6 l/ K+ K+ T. ~2 G8 W j# W. W: Z
5.误差雷达图
- }# Q" e: t' h
1ggcb3s1msz64017641416.png
1 D0 S% E2 }2 [# gTips:为了让图片更美观将多个维度评价指标进行归一化处理了2 \/ k: o! U3 Z E O) x
figure('Units', 'pixels', ... 'Position', [150 150 520 500]);Test_all1=Test_all./sum(Test_all); %把各个指标归一化到一个量纲Test_all1(:,end)=1-Test_all(:,end);RC=radarChart(Test_all1);str3={'A-MAE','A-MAPE','A-MSE','A-RMSE','1-R2'};RC.PropName=str3;RC.ClassName=str1;RC=RC.draw(); RC.legend();colorList=[78 101 155; 138 140 191; 184 168 207; 231 188 198; 253 207 158; 239 164 132; 182 118 108]./255;for n=1:RC.ClassNum RC.setPatchN(n,'Color',colorList(n,:),'MarkerFaceColor',colorList(n,:))end
?& h# T' x' t+ m: \7 E1 L) K本图参考了公众号:slandarer随笔
^/ t7 { K% J$ Q& u8 chttps://mp.weixin.qq.com/s/8Lu7yBs3cLlZk9bPStdgUA
3 l1 [! w3 p4 v- |* [8 Q
6 N- {2 w4 `3 c; Y! d: i调用函数8 T# y9 M" e; d+ t/ d2 q* j3 s
classdef radarChart% @Author : slandarer% 公众号 : slandarer随笔% 知乎 : hikari$ Z, g/ X5 X) R* @5 q9 |
properties ax;arginList={'ClassName','PropName','Type'} XData;RTick=[];RLim=[];SepList=[1,1.2,1.5,2,2.5,3,4,5,6,8] Type='Line'; PropNum;ClassNum ClassName={}; PropName={};% Z2 y# c, \8 B5 y) Q
BC=[198,199,201; 38, 74, 96; 209, 80, 51; 241,174, 44; 12,13,15; 102,194,165; 252,140, 98; 142,160,204; 231,138,195; 166,217, 83; 255,217, 48; 229,196,148; 179,179,179]./255;9 Y6 ^0 Y( \6 \" l: \
% 句柄 ThetaTickHdl;RTickHdl;RLabelHdl;LgdHdl;PatchHdl;PropLabelHdl;BkgHdl end
) F* i5 Y9 J% B+ R methods function obj=radarChart(varargin) if isa(varargin{1},'matlab.graphics.axis.Axes') obj.ax=varargin{1};varargin(1)=[]; else obj.ax=gca; end % 获取版本信息 tver=version('-release'); verMatlab=str2double(tver(1:4))+(abs(tver(5))-abs('a'))/2; if verMatlab hold on else hold(obj.ax,'on') end
, _3 y, a9 H+ X& X- D obj.XData=varargin{1};varargin(1)=[]; obj.PropNum=size(obj.XData,2); obj.ClassNum=size(obj.XData,1); obj.RLim=[0,max(obj.XData,[],[1,2])];
/ G% ]1 B7 Z0 |$ X' Q/ C % 获取其他信息 for i=1:2:(length(varargin)-1) tid=ismember(obj.arginList,varargin{i}); if any(tid) obj.(obj.arginList{tid})=varargin{i+1}; end end if isempty(obj.ClassName) for i=1:obj.ClassNum obj.ClassName{i}=['class ',num2str(i)]; end end if isempty(obj.PropName) for i=1:obj.PropNum obj.PropName{i}=['prop ',num2str(i)]; end end help radarChart end
8 n F) I8 L6 i6 D/ O2 O function obj=draw(obj) obj.ax.XLim=[-1,1]; obj.ax.YLim=[-1,1]; obj.ax.XTick=[]; obj.ax.YTick=[]; obj.ax.XColor='none'; obj.ax.YColor='none'; obj.ax.PlotBoxAspectRatio=[1,1,1]; % 绘制背景圆形 tt=linspace(0,2*pi,200); obj.BkgHdl=fill(cos(tt),sin(tt),[252,252,252]./255,'EdgeColor',[200,200,200]./255,'LineWidth',1); % 绘制Theta刻度线 tn=linspace(0,2*pi,obj.PropNum+1);tn=tn(1:end-1); XTheta=[cos(tn);zeros([1,obj.PropNum]);nan([1,obj.PropNum])]; YTheta=[sin(tn);zeros([1,obj.PropNum]);nan([1,obj.PropNum])]; obj.ThetaTickHdl=plot(XTheta(:),YTheta(:),'Color',[200,200,200]./255,'LineWidth',1); % 绘制R刻度线 if isempty(obj.RTick) dr=diff(obj.RLim); sepR=dr./3; multiE=ceil(log(sepR)/log(10)); sepR=sepR.*10^(1-multiE); sepR=obj.SepList(find(sepR0 _, C! _& K: B v7 \! t
sepNum=floor(dr./sepR); obj.RTick=obj.RLim(1)+(0:sepNum).*sepR; if obj.RTick(end)~=obj.RLim(2) obj.RTick=[obj.RTick,obj.RLim]; end end obj.RLim(obj.RLim obj.RLim(obj.RLim>obj.RLim(2))=[];5 ] e% H5 V; @' O( I0 |1 H
XR=cos(tt').*(obj.RTick-obj.RLim(1))./diff(obj.RLim);XR=[XR;nan([1,length(obj.RTick)])]; YR=sin(tt').*(obj.RTick-obj.RLim(1))./diff(obj.RLim);YR=[YR;nan([1,length(obj.RTick)])]; obj.RTickHdl=plot(XR(:),YR(:),'Color',[200,200,200]./255,'LineWidth',1.1,'LineStyle','--');- l) G, i: K5 h7 ^# R& N" W3 `
% 绘制雷达图 for i=1:size(obj.XData,1) XP=cos(tn).*(obj.XData(i,:)-obj.RLim(1))./diff(obj.RLim); YP=sin(tn).*(obj.XData(i,:)-obj.RLim(1))./diff(obj.RLim); switch obj.Type case 'Line' obj.PatchHdl(i)=plot([XP,XP(1)],[YP,YP(1)],... 'Color',obj.BC(mod(i-1,size(obj.BC,1))+1,:),'Marker','o',... 'LineWidth',1.8,'MarkerFaceColor',obj.BC(mod(i-1,size(obj.BC,1))+1,:)); case 'Patch' obj.PatchHdl(i)=patch(XP,YP,obj.BC(mod(i-1,size(obj.BC,1))+1,:),... 'EdgeColor',obj.BC(mod(i-1,size(obj.BC,1))+1,:),'FaceAlpha',.2,... 'LineWidth',1.8);
: u; H6 J* U% j; m# g end end
3 H7 g" d4 R/ C % 绘制R标签文本 tnr=(tn(1)+tn(2))/2; for i=1:length(obj.RTick) obj.RLabelHdl(i)=text(cos(tnr).*(obj.RTick(i)-obj.RLim(1))./diff(obj.RLim),... sin(tnr).*(obj.RTick(i)-obj.RLim(1))./diff(obj.RLim),... sprintf('%.2f',obj.RTick(i)),'FontName','Arial','FontSize',11); end1 |% O: a3 u4 ? s' r9 @! k
% 绘制属性标签 for i=1:obj.PropNum obj.PropLabelHdl(i)=text(cos(tn(i)).*1.1,sin(tn(i)).*1.1,obj.PropName{i},... 'FontSize',12,'HorizontalAlignment','center'); end6 T, v$ _: M' A! L) o
end% ========================================================================= function obj=setBkg(obj,varargin) set(obj.BkgHdl,varargin{:}) end
8 }- y% P, T% }: e: @ % 绘制图例 function obj=legend(obj) obj.LgdHdl=legend([obj.PatchHdl],obj.ClassName,'FontSize',12,'Location','best'); end % 设置图例属性 function obj=setLegend(obj,varargin) set(obj.LgdHdl,varargin{:}) end, i5 |, ?6 u# d1 K: \
% 设置标签 function obj=setPropLabel(obj,varargin) for i=1:obj.PropNum set(obj.PropLabelHdl(i),varargin{:}) end end function obj=setRLabel(obj,varargin) for i=1:length(obj.RLabelHdl) set(obj.RLabelHdl(i),varargin{:}) end end. ^+ K9 `1 D- v8 }+ y/ Y
% 设置轴 function obj=setRTick(obj,varargin) set(obj.RTickHdl,varargin{:}) end function obj=setThetaTick(obj,varargin) set(obj.ThetaTickHdl,varargin{:}) end
" s5 e7 b9 K: ^3 t: Z4 V) z7 S % 设置patch属性 function obj=setPatchN(obj,N,varargin) set(obj.PatchHdl(N),varargin{:}) end end% @author : slandarer% 公众号 : slandarer随笔% 知乎 : hikariend
3 A ^. ~) p2 B+ i% @2 o% Q
) J# ~ Y9 A! X( ] m
- M9 i) D& o; T' E. {6 g }
) v: E) u) S1 A' r$ P5 F% i: l3 r# ~6 Y2 I! x
6.误差罗盘图) W0 L. p2 o! |0 l$ A
at0iv1ujv4564017641517.png
; ?5 U$ J. e$ Y2 ?4 l+ n
figure('Units', 'pixels', ... 'Position', [150 150 920 600]);t = tiledlayout('flow','TileSpacing','compact');for i=1:length(Test_all(:,1))nexttileth1 = linspace(2*pi/length(Test_all(:,1))/2,2*pi-2*pi/length(Test_all(:,1))/2,length(Test_all(:,1)));r1 = Test_all(:,i)';[u1,v1] = pol2cart(th1,r1);M=compass(u1,v1);for j=1:length(Test_all(:,1)) M(j).LineWidth = 2; M(j).Color = colorList(j,:);
& C K- ^7 K2 e) B+ a- Rend title(str2{i})set(gca,"FontSize",10,"LineWidth",1)end legend(M,str1,"FontSize",10,"LineWidth",1,'Box','off','Location','southoutside')
; p9 L, W9 r+ d: j; m, E# J/ [4 V/ C" z时序的和回归的算法比较也是类似的,【领取数据和代码方式】,在公众号【Lvy的口袋】(下方链接直接进行公众号)后台回复关键词【算法对比图】领取,还有什么比较合适的对比图可以私发小编看能不能复现奥~) p( X+ ^# l0 V# Y& ]/ l) M: d3 V" v- r
- ^1 h8 y3 B- [. y5 u) c; B8 x" R( }
3 t, C8 W+ _5 w0 `* H- J! L
$ c' c" G' P. Q. x! Y. V
ps.合适的绘图之后可能会更新到工具箱中,全家桶大力更新中~早上车早实惠+ o% _, [1 _. X
5 x+ H; u* I- _* p" P全家桶系列
$ f( P+ z" O& d) O一键打包公众号过去和未来所有的作品~持续更新中【获取方式】扫码获取或者点击链接
$ r) M9 g: M3 N3 R$ chttps://mbd.pub/o/bread/mbd-ZJabmJ9v
3 h, Y7 n6 R- [& O! B& ]; x3 |& `% `' }( l; a7 Y7 C! r
, R, z# a4 i" }- P
piet2xeute364017641617.png
- z# N8 c# @8 l, m7 Z4 Z* z b5 b
7 v2 Y1 m/ _2 v# G
% Z o7 y( m! p/ x7 x5 L
bcw1yatfkud64017641717.png
% \, G% ]- [8 E; F
END
- t) y0 M+ A, e8 `% @ r" l
nh3ur3a5utk64017641817.png
7 |! G6 e# u# ~" ] U( P0 E1 f
8 F" d. d% A- C0 ~0 @- U1 n4 Q$ b
3 l5 D+ b+ X; o- ~" ^. x0 ]
cmr0a3pi3lo64017641917.jpg
" O6 s; X" d3 m4 ^* E+ h长按二维码识别关注+ [' h. T/ W+ M- R% D
往期精彩回顾5 y* @' c$ m4 \/ m2 Q
推荐 | 神器系列大更新!|一键实现百种高效算法|轻松解决评价、降维、聚类、回归、分类、时序预测、多输入多输出问题推荐 | 一句命令实现神经网络超参数优化推荐 | 四种降维方法及可视化 流2群【756559035】 |