电子产业一站式赋能平台

PCB联盟网

搜索
查看: 267|回复: 0
收起左侧

【算法对比图】回归、时序预测的多算法对比图

[复制链接]

260

主题

260

帖子

1835

积分

三级会员

Rank: 3Rank: 3

积分
1835
发表于 2023-12-21 22:21:00 | 显示全部楼层 |阅读模式

rx3akpfe0mf64015154517.png

rx3akpfe0mf64015154517.png

0 I2 ?1 ]/ _6 q8 j( {点击上方蓝字关注我们
  ]. D' _4 M0 _$ r/ u

jkiz3myaftd64015154617.png

jkiz3myaftd64015154617.png
5 h* P2 ~! `+ ~5 E( s
   注明:此推文来自公众号Lvy的口袋,欢迎大家关注Lvy小姐姐公众号~    多种算法对比图是常用的科研绘图,你知道几种合适的绘图样式呢?
/ r$ Z0 J1 b9 _, I
9 ~/ j( R1 G: R) E  x( V7 m) o& d

g4kxpj422m064015154717.png

g4kxpj422m064015154717.png

  [# t- b  S+ b' W. u- d) b4 R& g! i; A* I7 J
( p. I9 G5 U8 B
1.真实值和预测值展示图1 H' X5 `/ r3 Y" X
) x9 [7 ~7 v9 z4 G* P' H$ P7 A. I

la2n3mfhzg264015154817.png

la2n3mfhzg264015154817.png

4 m- D3 `/ b: @Tips:数据比较多、算法多的适合比较难看出实际的效果7 z8 v1 T, {; ?
数据就是各个算法预测值和真实值数据(工具箱直接导出)8 d  Z/ ?. e# ]. A# L/ E  [
  • data_pre_all=[]; %记录预测数据load(' 多元线性回归  17_Dec_11_34_33 train_result_train_vaild_test.mat')data1=data_Oriny_prey.y_test_predict;data_pre_all=[data_pre_all,data1];data_true=data_Oriny_prey.test_y;load('SSA麻雀搜索算法 随机森林回归  17_Dec_11_35_55 train_result_train_vaild_test.mat')data2=data_Oriny_prey.y_test_predict;data_pre_all=[data_pre_all,data2];load(' SVM-RF回归  17_Dec_11_37_18 train_result_train_vaild_test.mat')data3=data_Oriny_prey.y_test_predict;data_pre_all=[data_pre_all,data3];load(' MLP回归  17_Dec_11_38_31 train_result_train_vaild_test.mat')data4=data_Oriny_prey.y_test_predict;data_pre_all=[data_pre_all,data4];load(' LSTM回归  17_Dec_11_40_29 train_result_train_vaild_test.mat')data5=data_Oriny_prey.y_test_predict;data_pre_all=[data_pre_all,data5];str={'真实值','多元线性回归','SSA麻雀搜索算法 随机森林回归','SVM-RF回归' ,'MLP回归','LSTM回归'};figure('Units', 'pixels', ...    'Position', [300 300 860 375]);plot(data_true,'--*') hold onfor i=1:size(data_pre_all,2)    plot(data_pre_all(:,i))    hold on endlegend(str)set (gca,"FontSize",12,'LineWidth',1.2)box offlegend Box off$ D+ {, e/ P/ r# Y+ X

    & o& `2 `' L3 i! Y8 T/ V! p7 m/ i6 J
    # ?% _* @: T, f  A1 V+ [' L- F
    2.误差柱状对比图
    ; c% q* @, L& ]# X

    wab51yehzkx64015154917.png

    wab51yehzkx64015154917.png

    ( n/ w+ }  @' S2 u: hTips:建议选取量纲差别不大的误差衡量指标,不然可能会有点丑
    3 K  q5 d; d/ E5 {
  • Test_all=[];for j=1:size(data_pre_all,2)    y_test_predict=data_pre_all(:,j);    test_y=data_true;    test_MAE=sum(abs(y_test_predict-test_y))/length(test_y) ;           test_MAPE=sum(abs((y_test_predict-test_y)./test_y))/length(test_y);      test_MSE=(sum(((y_test_predict-test_y)).^2)/length(test_y));     test_RMSE=sqrt(sum(((y_test_predict-test_y)).^2)/length(test_y));      test_R2= 1 - (norm(test_y - y_test_predict)^2 / norm(test_y - mean(test_y))^2);       Test_all=[Test_all;test_MAE test_MAPE test_MSE test_RMSE test_R2];end%%str={'真实值','多元线性回归','SSA麻雀搜索算法 随机森林回归','SVM-RF回归' ,'MLP回归','LSTM回归'};str1=str(2:end);str2={'MAE','MAPE','MSE','RMSE','R2'};data_out=array2table(Test_all);data_out.Properties.VariableNames=str2;data_out.Properties.RowNames=str1;disp(data_out)%% 柱状图 MAE MAPE RMSE 柱状图适合量纲差别不大的color=    [0.1569    0.4706    0.7098    0.6039    0.7882    0.8588    0.9725    0.6745    0.5490    0.8549    0.9373    0.8275       0.7451    0.7216    0.8627    0.7843    0.1412    0.1373    1.0000    0.5333    0.5176      0.5569    0.8118    0.7882       1.0000    0.5333    0.5176];figure('Units', 'pixels', ...    'Position', [300 300 660 375]);plot_data_t=Test_all(:,[1,2,4])';b=bar(plot_data_t,0.8);hold on/ x8 n6 @( E$ Q; Z
    for i = 1 : size(plot_data_t,2)    x_data(:, i) = b(i).XEndPoints'; end9 U- p. W6 e+ U8 c. y1 M' o) Q
    for i =1:size(plot_data_t,2)b(i).FaceColor = color(i,:);b(i).EdgeColor=[0.6353    0.6314    0.6431];b(i).LineWidth=1.2;end
    ( o- P8 c# f9 e. hfor i = 1 : size(plot_data_t,1)-1    xilnk=(x_data(i, end)+ x_data(i+1, 1))/2;    b1=xline(xilnk,'--','LineWidth',1.2);    hold onend 3 ~* o5 V: k# S! {
    ax=gca;legend(b,str1,'Location','best')ax.XTickLabels ={'MAE', 'MAPE', 'RMSE'};set(gca,"FontSize",12,"LineWidth",2)box offlegend box off
    + N# c2 v3 u: c) L+ [
    1 m2 [4 g) N" U) R. j) L2 K

    6 ]$ r* n+ x, p! s" N
    : z  u4 t. v" h0 G/ @2 F* r( x2 G) }9 |/ C) o( {& E) m* m" x
    3.误差散点对比图
    7 v5 {: M4 h9 I! u7 y8 \

    wa5kjssogz264015155017.png

    wa5kjssogz264015155017.png
    ; G' `! X9 L6 L% r, E
    Tips:可以任意选择两个误差衡量维度# {; w1 W. N/ U3 [
  • figureplot_data_t1=Test_all(:,[1,5])';MarkerType={'s','o','pentagram','^','v'};for i = 1 : size(plot_data_t1,2)   scatter(plot_data_t1(1,i),plot_data_t1(2,i),120,MarkerType{i},"filled")   hold onendset(gca,"FontSize",12,"LineWidth",2)box offlegend box offlegend(str1,'Location','best')xlabel('MAE')ylabel('R2')grid on* S5 k& L# R2 a% p2 V4 s' s
    3 w0 o. L2 `0 `" N& i
    ! J7 Z# ~7 l& t

    ' O" h, b) w+ m8 R, |& e4.误差密度散点图
    7 p: @$ l6 o# s& T0 p

    ged0r4oybv564015155117.png

    ged0r4oybv564015155117.png

    7 w( ~3 M3 H! e/ x7 v- p& F
    ) r# o5 x" g9 {% `7 D
  • figure('Units', 'pixels', ...    'Position', [150 150 920 500]);for i=1:5    subplot(2,3,i)     n=50;     X=double(data_true);     Y=double(data_pre_all(:,i));     M=polyfit(X,Y,1);     Y1=polyval(M,X);    XList=linspace(min(X),max(X),n);    YList=linspace(min(Y),max(Y),n);    [XMesh,YMesh]=meshgrid(XList,YList);    F=ksdensity([X,Y],[XMesh(:),YMesh(:)]);    ZMesh=reshape(F,size(XMesh));    H=interp2(double(XMesh),double(YMesh),double(ZMesh),X,Y);    scatter(data_true,data_pre_all(:,i),35,'filled','CData',H,'MarkerFaceAlpha',.5);    hold on    plot(X(1:10:end),Y1(1:10:end),'--','LineWidth',1.2)    hold on    str_label=[str1{1,i},' ','R2=',num2str(Test_all(i,end))];    title(str_label)    set(gca,"FontSize",10,"LineWidth",1.5)    xlabel('true')    ylabel('predict')end
      P  d( ~0 M  _" |- f* M
    4 q: k& `9 X: l: W3 y
    - F% r3 u% b3 t% R+ |
    * _. x; ?$ u* g$ g. B' ^' O: i0 O$ N4 \8 Y$ ]
    5.误差雷达图
    9 E& |9 W+ f/ g/ t9 B8 J

    jlvj1itw1pj64015155218.png

    jlvj1itw1pj64015155218.png
    . F9 D( |$ E, C5 R/ M/ F
    Tips:为了让图片更美观将多个维度评价指标进行归一化处理了0 L2 c+ R1 K3 y# x2 _. ^9 B
  • figure('Units', 'pixels', ...    'Position', [150 150 520 500]);Test_all1=Test_all./sum(Test_all);  %把各个指标归一化到一个量纲Test_all1(:,end)=1-Test_all(:,end);RC=radarChart(Test_all1);str3={'A-MAE','A-MAPE','A-MSE','A-RMSE','1-R2'};RC.PropName=str3;RC.ClassName=str1;RC=RC.draw(); RC.legend();colorList=[78 101 155;          138 140 191;          184 168 207;          231 188 198;          253 207 158;          239 164 132;          182 118 108]./255;for n=1:RC.ClassNum    RC.setPatchN(n,'Color',colorList(n,:),'MarkerFaceColor',colorList(n,:))end- S; s* ?* F( j; }
    本图参考了公众号:slandarer随笔( \! |7 |( W; j  e- I
    https://mp.weixin.qq.com/s/8Lu7yBs3cLlZk9bPStdgUA/ V+ S, X1 [; h- B3 C; e
    * I& U% Z& C$ a4 ^# X8 I$ |1 V0 T
    调用函数
    * q3 c6 |5 I2 @7 L
  • classdef radarChart% @Author : slandarer% 公众号  : slandarer随笔% 知乎    : hikari$ s) M# `3 v% H0 g7 A& H
        properties        ax;arginList={'ClassName','PropName','Type'}        XData;RTick=[];RLim=[];SepList=[1,1.2,1.5,2,2.5,3,4,5,6,8]        Type='Line';        PropNum;ClassNum        ClassName={};        PropName={};7 T$ |5 k2 @% F0 B5 X; o4 d
            BC=[198,199,201;  38, 74, 96; 209, 80, 51; 241,174, 44; 12,13,15;            102,194,165; 252,140, 98; 142,160,204; 231,138,195;             166,217, 83; 255,217, 48; 229,196,148; 179,179,179]./255;, G6 ^/ d# ~, k6 B' p: w# x
            % 句柄        ThetaTickHdl;RTickHdl;RLabelHdl;LgdHdl;PatchHdl;PropLabelHdl;BkgHdl    end8 \1 E% F, Y3 x2 E' U$ a4 r! z/ j8 {
        methods        function obj=radarChart(varargin)            if isa(varargin{1},'matlab.graphics.axis.Axes')                obj.ax=varargin{1};varargin(1)=[];            else                obj.ax=gca;            end            % 获取版本信息            tver=version('-release');            verMatlab=str2double(tver(1:4))+(abs(tver(5))-abs('a'))/2;            if verMatlab                hold on            else                hold(obj.ax,'on')            end
    ' Y- w: E; l6 O7 d! o" f) Z; ^0 N5 d; Z            obj.XData=varargin{1};varargin(1)=[];            obj.PropNum=size(obj.XData,2);            obj.ClassNum=size(obj.XData,1);            obj.RLim=[0,max(obj.XData,[],[1,2])];
    2 `6 u2 p1 I0 C% N  J# _            % 获取其他信息            for i=1:2:(length(varargin)-1)                tid=ismember(obj.arginList,varargin{i});                if any(tid)                obj.(obj.arginList{tid})=varargin{i+1};                end            end            if isempty(obj.ClassName)                for i=1:obj.ClassNum                    obj.ClassName{i}=['class ',num2str(i)];                end            end            if isempty(obj.PropName)                for i=1:obj.PropNum                    obj.PropName{i}=['prop ',num2str(i)];                end            end            help radarChart        end
      @$ m9 Z, t2 j+ V4 j        function obj=draw(obj)            obj.ax.XLim=[-1,1];            obj.ax.YLim=[-1,1];            obj.ax.XTick=[];            obj.ax.YTick=[];            obj.ax.XColor='none';            obj.ax.YColor='none';            obj.ax.PlotBoxAspectRatio=[1,1,1];            % 绘制背景圆形            tt=linspace(0,2*pi,200);            obj.BkgHdl=fill(cos(tt),sin(tt),[252,252,252]./255,'EdgeColor',[200,200,200]./255,'LineWidth',1);            % 绘制Theta刻度线            tn=linspace(0,2*pi,obj.PropNum+1);tn=tn(1:end-1);            XTheta=[cos(tn);zeros([1,obj.PropNum]);nan([1,obj.PropNum])];            YTheta=[sin(tn);zeros([1,obj.PropNum]);nan([1,obj.PropNum])];            obj.ThetaTickHdl=plot(XTheta(:),YTheta(:),'Color',[200,200,200]./255,'LineWidth',1);            % 绘制R刻度线            if isempty(obj.RTick)                dr=diff(obj.RLim);                sepR=dr./3;                multiE=ceil(log(sepR)/log(10));                sepR=sepR.*10^(1-multiE);                sepR=obj.SepList(find(sepR& I  F, N3 v, _* `7 o
                    sepNum=floor(dr./sepR);                obj.RTick=obj.RLim(1)+(0:sepNum).*sepR;                if obj.RTick(end)~=obj.RLim(2)                    obj.RTick=[obj.RTick,obj.RLim];                end            end            obj.RLim(obj.RLim            obj.RLim(obj.RLim>obj.RLim(2))=[];
      c9 G. Y+ H" l# H% K            XR=cos(tt').*(obj.RTick-obj.RLim(1))./diff(obj.RLim);XR=[XR;nan([1,length(obj.RTick)])];            YR=sin(tt').*(obj.RTick-obj.RLim(1))./diff(obj.RLim);YR=[YR;nan([1,length(obj.RTick)])];            obj.RTickHdl=plot(XR(:),YR(:),'Color',[200,200,200]./255,'LineWidth',1.1,'LineStyle','--');
    " K5 f! Z8 X  H) l# D7 [5 @4 |            % 绘制雷达图            for i=1:size(obj.XData,1)                XP=cos(tn).*(obj.XData(i,:)-obj.RLim(1))./diff(obj.RLim);                YP=sin(tn).*(obj.XData(i,:)-obj.RLim(1))./diff(obj.RLim);                switch obj.Type                    case 'Line'                        obj.PatchHdl(i)=plot([XP,XP(1)],[YP,YP(1)],...                            'Color',obj.BC(mod(i-1,size(obj.BC,1))+1,:),'Marker','o',...                            'LineWidth',1.8,'MarkerFaceColor',obj.BC(mod(i-1,size(obj.BC,1))+1,:));                    case 'Patch'                        obj.PatchHdl(i)=patch(XP,YP,obj.BC(mod(i-1,size(obj.BC,1))+1,:),...                            'EdgeColor',obj.BC(mod(i-1,size(obj.BC,1))+1,:),'FaceAlpha',.2,...                            'LineWidth',1.8);: j2 ?. s+ G5 n
                    end            end( B3 p6 n) L  }5 ?
                % 绘制R标签文本            tnr=(tn(1)+tn(2))/2;            for i=1:length(obj.RTick)                obj.RLabelHdl(i)=text(cos(tnr).*(obj.RTick(i)-obj.RLim(1))./diff(obj.RLim),...                                      sin(tnr).*(obj.RTick(i)-obj.RLim(1))./diff(obj.RLim),...                                      sprintf('%.2f',obj.RTick(i)),'FontName','Arial','FontSize',11);            end
    ) n4 F; _( y0 A+ u3 p            % 绘制属性标签            for i=1:obj.PropNum                obj.PropLabelHdl(i)=text(cos(tn(i)).*1.1,sin(tn(i)).*1.1,obj.PropName{i},...                    'FontSize',12,'HorizontalAlignment','center');            end: A8 n  A8 ]3 Q* u+ |$ Q
            end% =========================================================================        function obj=setBkg(obj,varargin)            set(obj.BkgHdl,varargin{:})        end/ o/ u, F4 M+ W+ k1 J' J  i6 X
            % 绘制图例        function obj=legend(obj)            obj.LgdHdl=legend([obj.PatchHdl],obj.ClassName,'FontSize',12,'Location','best');        end        % 设置图例属性        function obj=setLegend(obj,varargin)            set(obj.LgdHdl,varargin{:})        end
    $ b0 |1 d# L# ?6 t. F+ x        % 设置标签        function obj=setPropLabel(obj,varargin)            for i=1:obj.PropNum                set(obj.PropLabelHdl(i),varargin{:})            end        end        function obj=setRLabel(obj,varargin)            for i=1:length(obj.RLabelHdl)                set(obj.RLabelHdl(i),varargin{:})            end        end4 I' }* }  ?5 B
            % 设置轴        function obj=setRTick(obj,varargin)            set(obj.RTickHdl,varargin{:})        end        function obj=setThetaTick(obj,varargin)            set(obj.ThetaTickHdl,varargin{:})        end
    6 z) ~1 _* ^9 b1 E1 f% o        % 设置patch属性        function obj=setPatchN(obj,N,varargin)            set(obj.PatchHdl(N),varargin{:})        end    end% @author : slandarer% 公众号  : slandarer随笔% 知乎    : hikariend- z2 J$ _; M( Y- Y( t9 p( L
    ; w. ^2 w/ E1 G# w5 c

    5 B+ f3 {. Q7 |  Z
    + ?4 R. c/ [# Q1 b
    . s8 ^! h- v" {3 A! |6.误差罗盘图
    0 n8 d% a3 B( z5 Y

    1yz2olsrjyw64015155318.png

    1yz2olsrjyw64015155318.png

    7 d+ Q# \& d: r5 L$ b3 j- X1 F( S
  • figure('Units', 'pixels', ...    'Position', [150 150 920 600]);t = tiledlayout('flow','TileSpacing','compact');for i=1:length(Test_all(:,1))nexttileth1 = linspace(2*pi/length(Test_all(:,1))/2,2*pi-2*pi/length(Test_all(:,1))/2,length(Test_all(:,1)));r1 = Test_all(:,i)';[u1,v1] = pol2cart(th1,r1);M=compass(u1,v1);for j=1:length(Test_all(:,1))    M(j).LineWidth = 2;    M(j).Color = colorList(j,:);- ~: {# X% R! f8 E7 R6 B( B9 ~
    end   title(str2{i})set(gca,"FontSize",10,"LineWidth",1)end legend(M,str1,"FontSize",10,"LineWidth",1,'Box','off','Location','southoutside')
    " b4 h3 ~; f$ P3 e+ H1 m9 _. s时序的和回归的算法比较也是类似的,【领取数据和代码方式】,在公众号【Lvy的口袋】(下方链接直接进行公众号)后台回复关键词【算法对比图】领取,还有什么比较合适的对比图可以私发小编看能不能复现奥~
    . ^; }; L0 r* W. T
    + r' |& z+ p/ b9 d4 ~/ J5 t  m4 g% `* b
    . e) S0 {3 H) A3 i  ~7 r
    ps.合适的绘图之后可能会更新到工具箱中,全家桶大力更新中~早上车早实惠5 [5 Q% b; T. F/ m( F# Z

    4 h6 T8 k, t0 J$ w1 Z4 {全家桶系列
    , j( r+ F7 [7 {% J. Y! ^$ a8 [! C一键打包公众号过去和未来所有的作品~持续更新中获取方式】扫码获取或者点击链接
    $ t: |' e+ b! s$ T8 ~+ ^2 S: l* mhttps://mbd.pub/o/bread/mbd-ZJabmJ9v
    ( W5 s" W& n, V" M2 e# }- A- q$ d1 X4 o: a1 Y
    & F* J1 N- D* z+ N. J

    01efpmj0crv64015155418.png

    01efpmj0crv64015155418.png

    , `' T. A! A" i" b2 ?' j) L2 }8 l; X# D
      X0 z4 X$ f* S7 d1 o. r

    hk1fqkwdzgy64015155518.png

    hk1fqkwdzgy64015155518.png
    0 R3 C1 r2 c& v
    END
    $ P) o% a6 G2 d9 {; m) q5 s

    m2j1p5lkx0y64015155618.png

    m2j1p5lkx0y64015155618.png
    5 ^" o& K' \" J
    $ A6 l* s6 `6 ~' n3 s+ K

    ! O+ F1 N2 ~0 ]; y

    5gobmhmv0we64015155718.jpg

    5gobmhmv0we64015155718.jpg

    ; s, e( ?. \) ^# H, W4 g3 y' N. a长按二维码识别关注0 x! B9 g: o9 c) R' u  F
    往期精彩回顾
    + k6 X/ ^# J( Y推荐 | 神器系列大更新!|一键实现百种高效算法|轻松解决评价、降维、聚类、回归、分类、时序预测、多输入多输出问题推荐 | 一句命令实现神经网络超参数优化推荐 | 四种降维方法及可视化      流2群【756559035】
  • 回复

    使用道具 举报

    发表回复

    您需要登录后才可以回帖 登录 | 立即注册

    本版积分规则


    联系客服 关注微信 下载APP 返回顶部 返回列表