|

zkmyrwk0rly6405170516.png
. S2 c! Y( j* V' M$ T& w6 J
点击上方蓝字关注我们" [: i9 U5 O" J
gi4t0fmrbsh6405170616.png
! \$ p* M( J d7 Z$ z. s 注明:此推文来自公众号Lvy的口袋,欢迎大家关注Lvy小姐姐公众号~ 多种算法对比图是常用的科研绘图,你知道几种合适的绘图样式呢?; [9 ]( i; h# i
0 b- ^. C4 X7 m# y
ta3su3h4b5j6405170716.png
" x3 \! |# k9 |$ Q6 R0 r8 j) j
9 U/ e2 Z8 S3 d+ F; D! C3 }' C$ m6 G% |' f) I9 ~* ]7 x. ]
1.真实值和预测值展示图
) f# T- Z( P; x2 h5 P; C. \( i. U6 s) D/ `$ x" t
f3vse0wgvsy6405170816.png
$ Z. M2 v9 b' _; a: ZTips:数据比较多、算法多的适合比较难看出实际的效果& V+ B( m! [% L
数据就是各个算法预测值和真实值数据(工具箱直接导出)3 G( {& a+ A- U" x
data_pre_all=[]; %记录预测数据load(' 多元线性回归 17_Dec_11_34_33 train_result_train_vaild_test.mat')data1=data_Oriny_prey.y_test_predict;data_pre_all=[data_pre_all,data1];data_true=data_Oriny_prey.test_y;load('SSA麻雀搜索算法 随机森林回归 17_Dec_11_35_55 train_result_train_vaild_test.mat')data2=data_Oriny_prey.y_test_predict;data_pre_all=[data_pre_all,data2];load(' SVM-RF回归 17_Dec_11_37_18 train_result_train_vaild_test.mat')data3=data_Oriny_prey.y_test_predict;data_pre_all=[data_pre_all,data3];load(' MLP回归 17_Dec_11_38_31 train_result_train_vaild_test.mat')data4=data_Oriny_prey.y_test_predict;data_pre_all=[data_pre_all,data4];load(' LSTM回归 17_Dec_11_40_29 train_result_train_vaild_test.mat')data5=data_Oriny_prey.y_test_predict;data_pre_all=[data_pre_all,data5];str={'真实值','多元线性回归','SSA麻雀搜索算法 随机森林回归','SVM-RF回归' ,'MLP回归','LSTM回归'};figure('Units', 'pixels', ... 'Position', [300 300 860 375]);plot(data_true,'--*') hold onfor i=1:size(data_pre_all,2) plot(data_pre_all(:,i)) hold on endlegend(str)set (gca,"FontSize",12,'LineWidth',1.2)box offlegend Box off8 \8 U) s2 Z3 C1 j
# n5 F% @' v. s, `3 j8 Q4 i- R- c7 b0 A+ j: S6 A8 o4 ]* Z
7 b+ {( q( l# y; r
2.误差柱状对比图
d# Q& D: r( M/ [# Q" C6 r
yvjybvevud56405170916.png
. @* ]2 F4 U5 s: i2 M& T" n7 r
Tips:建议选取量纲差别不大的误差衡量指标,不然可能会有点丑/ z+ V) e: e! N7 v# C
Test_all=[];for j=1:size(data_pre_all,2) y_test_predict=data_pre_all(:,j); test_y=data_true; test_MAE=sum(abs(y_test_predict-test_y))/length(test_y) ; test_MAPE=sum(abs((y_test_predict-test_y)./test_y))/length(test_y); test_MSE=(sum(((y_test_predict-test_y)).^2)/length(test_y)); test_RMSE=sqrt(sum(((y_test_predict-test_y)).^2)/length(test_y)); test_R2= 1 - (norm(test_y - y_test_predict)^2 / norm(test_y - mean(test_y))^2); Test_all=[Test_all;test_MAE test_MAPE test_MSE test_RMSE test_R2];end%%str={'真实值','多元线性回归','SSA麻雀搜索算法 随机森林回归','SVM-RF回归' ,'MLP回归','LSTM回归'};str1=str(2:end);str2={'MAE','MAPE','MSE','RMSE','R2'};data_out=array2table(Test_all);data_out.Properties.VariableNames=str2;data_out.Properties.RowNames=str1;disp(data_out)%% 柱状图 MAE MAPE RMSE 柱状图适合量纲差别不大的color= [0.1569 0.4706 0.7098 0.6039 0.7882 0.8588 0.9725 0.6745 0.5490 0.8549 0.9373 0.8275 0.7451 0.7216 0.8627 0.7843 0.1412 0.1373 1.0000 0.5333 0.5176 0.5569 0.8118 0.7882 1.0000 0.5333 0.5176];figure('Units', 'pixels', ... 'Position', [300 300 660 375]);plot_data_t=Test_all(:,[1,2,4])';b=bar(plot_data_t,0.8);hold on
3 H3 r) q, m- V1 H I7 N! z- kfor i = 1 : size(plot_data_t,2) x_data(:, i) = b(i).XEndPoints'; end0 O7 }3 ^# O6 H2 E. e3 Z) y1 A
for i =1:size(plot_data_t,2)b(i).FaceColor = color(i,:);b(i).EdgeColor=[0.6353 0.6314 0.6431];b(i).LineWidth=1.2;end- U: _* C/ `2 t* z
for i = 1 : size(plot_data_t,1)-1 xilnk=(x_data(i, end)+ x_data(i+1, 1))/2; b1=xline(xilnk,'--','LineWidth',1.2); hold onend ; D* {" g, p, q6 e1 T- L8 A
ax=gca;legend(b,str1,'Location','best')ax.XTickLabels ={'MAE', 'MAPE', 'RMSE'};set(gca,"FontSize",12,"LineWidth",2)box offlegend box off
2 \: s, r4 q# [9 A
1 \% X$ ]( ]4 e8 i6 B) L
6 L- Z/ N/ x# ~& s3 C6 N& V" x6 U6 f8 s* l
% @% n, i' I0 Z. ?6 C2 W/ X3 z
3.误差散点对比图6 Q0 @# c% Y( y
syu5xqepsbu6405171016.png
* P; U" h5 t9 T8 C$ Z
Tips:可以任意选择两个误差衡量维度& L7 m- J1 a8 H8 E
figureplot_data_t1=Test_all(:,[1,5])';MarkerType={'s','o','pentagram','^','v'};for i = 1 : size(plot_data_t1,2) scatter(plot_data_t1(1,i),plot_data_t1(2,i),120,MarkerType{i},"filled") hold onendset(gca,"FontSize",12,"LineWidth",2)box offlegend box offlegend(str1,'Location','best')xlabel('MAE')ylabel('R2')grid on
( c! ~2 x* p& L( t3 {; F; x$ @9 U0 ~( \
3 X) Q* e9 C- k1 V9 T
: ]; I: U& k; K$ \
4.误差密度散点图! O" v8 M+ i2 c- L% R
dhnt1i4axun6405171116.png
B' K ]( Y2 R7 D V9 |! e
# V* I+ `# z9 k9 l" {figure('Units', 'pixels', ... 'Position', [150 150 920 500]);for i=1:5 subplot(2,3,i) n=50; X=double(data_true); Y=double(data_pre_all(:,i)); M=polyfit(X,Y,1); Y1=polyval(M,X); XList=linspace(min(X),max(X),n); YList=linspace(min(Y),max(Y),n); [XMesh,YMesh]=meshgrid(XList,YList); F=ksdensity([X,Y],[XMesh(:),YMesh(:)]); ZMesh=reshape(F,size(XMesh)); H=interp2(double(XMesh),double(YMesh),double(ZMesh),X,Y); scatter(data_true,data_pre_all(:,i),35,'filled','CData',H,'MarkerFaceAlpha',.5); hold on plot(X(1:10:end),Y1(1:10:end),'--','LineWidth',1.2) hold on str_label=[str1{1,i},' ','R2=',num2str(Test_all(i,end))]; title(str_label) set(gca,"FontSize",10,"LineWidth",1.5) xlabel('true') ylabel('predict')end
! J% }1 \+ p1 a; ?9 o8 W, [/ s
7 o- b# B- _( A0 E! Y
; ~& j* ]4 L) {* ]- S$ E
; Q* h. s5 h' F7 ^0 j: z' h3 a/ e$ {; A H9 q* i4 f
5.误差雷达图
) @& K) i' X( b+ ~1 M' u7 E% C
muc1jfssmfq6405171216.png
& ?% n4 V1 y0 ?! e! Q3 ^
Tips:为了让图片更美观将多个维度评价指标进行归一化处理了
; `& N7 A# ]$ g. Ffigure('Units', 'pixels', ... 'Position', [150 150 520 500]);Test_all1=Test_all./sum(Test_all); %把各个指标归一化到一个量纲Test_all1(:,end)=1-Test_all(:,end);RC=radarChart(Test_all1);str3={'A-MAE','A-MAPE','A-MSE','A-RMSE','1-R2'};RC.PropName=str3;RC.ClassName=str1;RC=RC.draw(); RC.legend();colorList=[78 101 155; 138 140 191; 184 168 207; 231 188 198; 253 207 158; 239 164 132; 182 118 108]./255;for n=1:RC.ClassNum RC.setPatchN(n,'Color',colorList(n,:),'MarkerFaceColor',colorList(n,:))end3 G- g" f+ p7 P; t- v& S( f
本图参考了公众号:slandarer随笔
, E6 ~5 e7 }& p2 Y) A/ {/ F$ _* g8 Rhttps://mp.weixin.qq.com/s/8Lu7yBs3cLlZk9bPStdgUA; |) }- E5 j( F- \
8 y% {. f, ^9 \
调用函数) U" ?& v7 H/ c, [
classdef radarChart% @Author : slandarer% 公众号 : slandarer随笔% 知乎 : hikari
- g( Y" T0 k) B$ T+ ~" {. ~ properties ax;arginList={'ClassName','PropName','Type'} XData;RTick=[];RLim=[];SepList=[1,1.2,1.5,2,2.5,3,4,5,6,8] Type='Line'; PropNum;ClassNum ClassName={}; PropName={};
6 l8 J6 V" g! _, j/ ~ BC=[198,199,201; 38, 74, 96; 209, 80, 51; 241,174, 44; 12,13,15; 102,194,165; 252,140, 98; 142,160,204; 231,138,195; 166,217, 83; 255,217, 48; 229,196,148; 179,179,179]./255;0 ]# {0 m3 B' h; M/ q: i& g
% 句柄 ThetaTickHdl;RTickHdl;RLabelHdl;LgdHdl;PatchHdl;PropLabelHdl;BkgHdl end
; F3 R* k4 y3 A" K$ Q: d methods function obj=radarChart(varargin) if isa(varargin{1},'matlab.graphics.axis.Axes') obj.ax=varargin{1};varargin(1)=[]; else obj.ax=gca; end % 获取版本信息 tver=version('-release'); verMatlab=str2double(tver(1:4))+(abs(tver(5))-abs('a'))/2; if verMatlab hold on else hold(obj.ax,'on') end O3 g0 e6 K) E! [5 X0 w8 i) e8 I4 P
obj.XData=varargin{1};varargin(1)=[]; obj.PropNum=size(obj.XData,2); obj.ClassNum=size(obj.XData,1); obj.RLim=[0,max(obj.XData,[],[1,2])];
# G& E# e" G. I! {8 X % 获取其他信息 for i=1:2:(length(varargin)-1) tid=ismember(obj.arginList,varargin{i}); if any(tid) obj.(obj.arginList{tid})=varargin{i+1}; end end if isempty(obj.ClassName) for i=1:obj.ClassNum obj.ClassName{i}=['class ',num2str(i)]; end end if isempty(obj.PropName) for i=1:obj.PropNum obj.PropName{i}=['prop ',num2str(i)]; end end help radarChart end
* z ]7 T4 N& f- K: k+ r function obj=draw(obj) obj.ax.XLim=[-1,1]; obj.ax.YLim=[-1,1]; obj.ax.XTick=[]; obj.ax.YTick=[]; obj.ax.XColor='none'; obj.ax.YColor='none'; obj.ax.PlotBoxAspectRatio=[1,1,1]; % 绘制背景圆形 tt=linspace(0,2*pi,200); obj.BkgHdl=fill(cos(tt),sin(tt),[252,252,252]./255,'EdgeColor',[200,200,200]./255,'LineWidth',1); % 绘制Theta刻度线 tn=linspace(0,2*pi,obj.PropNum+1);tn=tn(1:end-1); XTheta=[cos(tn);zeros([1,obj.PropNum]);nan([1,obj.PropNum])]; YTheta=[sin(tn);zeros([1,obj.PropNum]);nan([1,obj.PropNum])]; obj.ThetaTickHdl=plot(XTheta(:),YTheta(:),'Color',[200,200,200]./255,'LineWidth',1); % 绘制R刻度线 if isempty(obj.RTick) dr=diff(obj.RLim); sepR=dr./3; multiE=ceil(log(sepR)/log(10)); sepR=sepR.*10^(1-multiE); sepR=obj.SepList(find(sepR
1 m. m( }2 F2 ]) e0 l sepNum=floor(dr./sepR); obj.RTick=obj.RLim(1)+(0:sepNum).*sepR; if obj.RTick(end)~=obj.RLim(2) obj.RTick=[obj.RTick,obj.RLim]; end end obj.RLim(obj.RLim obj.RLim(obj.RLim>obj.RLim(2))=[];1 f4 ^% i$ g4 i& v! L
XR=cos(tt').*(obj.RTick-obj.RLim(1))./diff(obj.RLim);XR=[XR;nan([1,length(obj.RTick)])]; YR=sin(tt').*(obj.RTick-obj.RLim(1))./diff(obj.RLim);YR=[YR;nan([1,length(obj.RTick)])]; obj.RTickHdl=plot(XR(:),YR(:),'Color',[200,200,200]./255,'LineWidth',1.1,'LineStyle','--');
9 R( b% r O# {& | % 绘制雷达图 for i=1:size(obj.XData,1) XP=cos(tn).*(obj.XData(i,:)-obj.RLim(1))./diff(obj.RLim); YP=sin(tn).*(obj.XData(i,:)-obj.RLim(1))./diff(obj.RLim); switch obj.Type case 'Line' obj.PatchHdl(i)=plot([XP,XP(1)],[YP,YP(1)],... 'Color',obj.BC(mod(i-1,size(obj.BC,1))+1,:),'Marker','o',... 'LineWidth',1.8,'MarkerFaceColor',obj.BC(mod(i-1,size(obj.BC,1))+1,:)); case 'Patch' obj.PatchHdl(i)=patch(XP,YP,obj.BC(mod(i-1,size(obj.BC,1))+1,:),... 'EdgeColor',obj.BC(mod(i-1,size(obj.BC,1))+1,:),'FaceAlpha',.2,... 'LineWidth',1.8);
) b+ ]" o M/ W. M end end h2 J. j! `9 b& R" j+ H4 M% `
% 绘制R标签文本 tnr=(tn(1)+tn(2))/2; for i=1:length(obj.RTick) obj.RLabelHdl(i)=text(cos(tnr).*(obj.RTick(i)-obj.RLim(1))./diff(obj.RLim),... sin(tnr).*(obj.RTick(i)-obj.RLim(1))./diff(obj.RLim),... sprintf('%.2f',obj.RTick(i)),'FontName','Arial','FontSize',11); end9 J( n, h* X, c9 s3 [2 h/ B& ]
% 绘制属性标签 for i=1:obj.PropNum obj.PropLabelHdl(i)=text(cos(tn(i)).*1.1,sin(tn(i)).*1.1,obj.PropName{i},... 'FontSize',12,'HorizontalAlignment','center'); end
: G4 ?3 ^* t6 M! W# M `$ @% `$ m end% ========================================================================= function obj=setBkg(obj,varargin) set(obj.BkgHdl,varargin{:}) end7 N8 ^: U$ Q7 m
% 绘制图例 function obj=legend(obj) obj.LgdHdl=legend([obj.PatchHdl],obj.ClassName,'FontSize',12,'Location','best'); end % 设置图例属性 function obj=setLegend(obj,varargin) set(obj.LgdHdl,varargin{:}) end
* f+ P7 O a# J& n % 设置标签 function obj=setPropLabel(obj,varargin) for i=1:obj.PropNum set(obj.PropLabelHdl(i),varargin{:}) end end function obj=setRLabel(obj,varargin) for i=1:length(obj.RLabelHdl) set(obj.RLabelHdl(i),varargin{:}) end end4 m i4 N; b. a# S- [% F& h2 F5 ]
% 设置轴 function obj=setRTick(obj,varargin) set(obj.RTickHdl,varargin{:}) end function obj=setThetaTick(obj,varargin) set(obj.ThetaTickHdl,varargin{:}) end8 i D, Z5 k- j' c
% 设置patch属性 function obj=setPatchN(obj,N,varargin) set(obj.PatchHdl(N),varargin{:}) end end% @author : slandarer% 公众号 : slandarer随笔% 知乎 : hikariend
- L) V* M( U! { H4 R
* }) t. g& Y2 P; H
[; O k# A7 v' }1 s
) Y$ g: j- ?" v# Z8 @9 A8 G/ r; ^) T
6.误差罗盘图
2 m9 m0 j6 Q& m% W7 K7 s* Y
s1vhrhghiwk6405171317.png
: g# K! g, s" Q, I7 Wfigure('Units', 'pixels', ... 'Position', [150 150 920 600]);t = tiledlayout('flow','TileSpacing','compact');for i=1:length(Test_all(:,1))nexttileth1 = linspace(2*pi/length(Test_all(:,1))/2,2*pi-2*pi/length(Test_all(:,1))/2,length(Test_all(:,1)));r1 = Test_all(:,i)';[u1,v1] = pol2cart(th1,r1);M=compass(u1,v1);for j=1:length(Test_all(:,1)) M(j).LineWidth = 2; M(j).Color = colorList(j,:);
5 D; G+ [7 _' H2 b* Iend title(str2{i})set(gca,"FontSize",10,"LineWidth",1)end legend(M,str1,"FontSize",10,"LineWidth",1,'Box','off','Location','southoutside')
6 }! w& ?4 Y# `时序的和回归的算法比较也是类似的,【领取数据和代码方式】,在公众号【Lvy的口袋】(下方链接直接进行公众号)后台回复关键词【算法对比图】领取,还有什么比较合适的对比图可以私发小编看能不能复现奥~: [; V8 j7 x: h0 F: q3 i
: ?, F/ _% a9 u
1 x% ]7 d, Z. F: f- X! K: Z
; X$ i f: C9 `+ W! o4 V+ H+ `ps.合适的绘图之后可能会更新到工具箱中,全家桶大力更新中~早上车早实惠* B7 v% y. k& U; L( v
/ J+ i) Z: C" \# i) N+ ]
全家桶系列
" `2 ?* u# z! w, W3 w一键打包公众号过去和未来所有的作品~持续更新中【获取方式】扫码获取或者点击链接9 z1 P' g5 [0 z% g1 a5 ?' a
https://mbd.pub/o/bread/mbd-ZJabmJ9v/ a/ b& N, W% H5 [. Q
! S- Z" ~4 I2 W( w, w
! v! Q9 w3 l G8 L) C) x4 A) k2 G: s
ptjow4ojfni6405171417.png
2 u5 M9 E# d; h9 w
2 S6 Z- M: G$ V& g: |2 W
- S7 p. A' R, t4 E
hrfhfa4q11m6405171517.png
! x2 x& b" o1 `: v/ z+ E! P a
END0 m5 e' F. V8 T5 f7 O' U% P
q1e45uu1veh6405171617.png
3 C1 p* C' d$ ]5 G5 U1 c& Y* Y0 ^
0 |3 z. |3 G4 k/ x5 v2 n
3jv3vaq5qbu6405171717.jpg
) `5 R% D9 R& K8 ^% Y长按二维码识别关注/ w2 o- `( C, ^$ D
往期精彩回顾8 P( N# x) n3 |$ y4 v
推荐 | 神器系列大更新!|一键实现百种高效算法|轻松解决评价、降维、聚类、回归、分类、时序预测、多输入多输出问题推荐 | 一句命令实现神经网络超参数优化推荐 | 四种降维方法及可视化 流2群【756559035】 |
|