|

1a0rvf1pxsc6403007614.png
- E( r. K" k. H6 s7 c8 Q; W" G6 R; K+ p点击上方蓝字关注我们
2 v( P* v- X. N) \- t
wnwo3xr5jpn6403007714.png
6 j7 P2 O: C0 m! C) c5 e& E& g 注明:此推文来自公众号Lvy的口袋,欢迎大家关注Lvy小姐姐公众号~ 多种算法对比图是常用的科研绘图,你知道几种合适的绘图样式呢?
) \2 f' q: E6 M6 i, w' j: b1 _. D4 S
pah1umbmdjh6403007814.png
3 b+ ^' E/ G9 U" u# s' d. m* m6 i. u* }# l* p
) s7 r8 w+ Q: l$ C
1.真实值和预测值展示图
c& }2 a0 B% ?1 G) j1 s* [ V" U
/ Y( Z( H5 r+ w Z4 L" ~
dq001cpgbsy6403007914.png
% e0 x! U' v D' |7 ~+ y$ n
Tips:数据比较多、算法多的适合比较难看出实际的效果" {' N8 k9 I( V2 E' x+ _
数据就是各个算法预测值和真实值数据(工具箱直接导出): K4 P! I+ A2 r- d/ J
data_pre_all=[]; %记录预测数据load(' 多元线性回归 17_Dec_11_34_33 train_result_train_vaild_test.mat')data1=data_Oriny_prey.y_test_predict;data_pre_all=[data_pre_all,data1];data_true=data_Oriny_prey.test_y;load('SSA麻雀搜索算法 随机森林回归 17_Dec_11_35_55 train_result_train_vaild_test.mat')data2=data_Oriny_prey.y_test_predict;data_pre_all=[data_pre_all,data2];load(' SVM-RF回归 17_Dec_11_37_18 train_result_train_vaild_test.mat')data3=data_Oriny_prey.y_test_predict;data_pre_all=[data_pre_all,data3];load(' MLP回归 17_Dec_11_38_31 train_result_train_vaild_test.mat')data4=data_Oriny_prey.y_test_predict;data_pre_all=[data_pre_all,data4];load(' LSTM回归 17_Dec_11_40_29 train_result_train_vaild_test.mat')data5=data_Oriny_prey.y_test_predict;data_pre_all=[data_pre_all,data5];str={'真实值','多元线性回归','SSA麻雀搜索算法 随机森林回归','SVM-RF回归' ,'MLP回归','LSTM回归'};figure('Units', 'pixels', ... 'Position', [300 300 860 375]);plot(data_true,'--*') hold onfor i=1:size(data_pre_all,2) plot(data_pre_all(:,i)) hold on endlegend(str)set (gca,"FontSize",12,'LineWidth',1.2)box offlegend Box off' M+ i: O- I4 S6 `" j
6 Y9 l1 z3 f0 Q5 P! F) H" Z1 j$ i$ ^1 x3 c
, m. L: L" Z% e( s& v& l, [
2.误差柱状对比图
O$ w7 @& C; {/ j( Q5 d
qcl4khoys1g6403008014.png
# s5 r2 a/ {1 n5 ]. eTips:建议选取量纲差别不大的误差衡量指标,不然可能会有点丑+ o7 _9 s4 u ]$ } G. z. a/ B
Test_all=[];for j=1:size(data_pre_all,2) y_test_predict=data_pre_all(:,j); test_y=data_true; test_MAE=sum(abs(y_test_predict-test_y))/length(test_y) ; test_MAPE=sum(abs((y_test_predict-test_y)./test_y))/length(test_y); test_MSE=(sum(((y_test_predict-test_y)).^2)/length(test_y)); test_RMSE=sqrt(sum(((y_test_predict-test_y)).^2)/length(test_y)); test_R2= 1 - (norm(test_y - y_test_predict)^2 / norm(test_y - mean(test_y))^2); Test_all=[Test_all;test_MAE test_MAPE test_MSE test_RMSE test_R2];end%%str={'真实值','多元线性回归','SSA麻雀搜索算法 随机森林回归','SVM-RF回归' ,'MLP回归','LSTM回归'};str1=str(2:end);str2={'MAE','MAPE','MSE','RMSE','R2'};data_out=array2table(Test_all);data_out.Properties.VariableNames=str2;data_out.Properties.RowNames=str1;disp(data_out)%% 柱状图 MAE MAPE RMSE 柱状图适合量纲差别不大的color= [0.1569 0.4706 0.7098 0.6039 0.7882 0.8588 0.9725 0.6745 0.5490 0.8549 0.9373 0.8275 0.7451 0.7216 0.8627 0.7843 0.1412 0.1373 1.0000 0.5333 0.5176 0.5569 0.8118 0.7882 1.0000 0.5333 0.5176];figure('Units', 'pixels', ... 'Position', [300 300 660 375]);plot_data_t=Test_all(:,[1,2,4])';b=bar(plot_data_t,0.8);hold on
- l! i0 ]' b# pfor i = 1 : size(plot_data_t,2) x_data(:, i) = b(i).XEndPoints'; end
! f' Q8 \0 U; z1 m! t/ ffor i =1:size(plot_data_t,2)b(i).FaceColor = color(i,:);b(i).EdgeColor=[0.6353 0.6314 0.6431];b(i).LineWidth=1.2;end
8 q0 C; L4 b5 U; J0 d6 Sfor i = 1 : size(plot_data_t,1)-1 xilnk=(x_data(i, end)+ x_data(i+1, 1))/2; b1=xline(xilnk,'--','LineWidth',1.2); hold onend
6 }% r* ~( Z8 W; ~1 ?ax=gca;legend(b,str1,'Location','best')ax.XTickLabels ={'MAE', 'MAPE', 'RMSE'};set(gca,"FontSize",12,"LineWidth",2)box offlegend box off
3 a$ G" O) X1 ?' }$ n! h8 U
2 B+ p. n. b( U( C* J
! n% Q4 a5 F4 ]* C- m R! |' C4 m, G- I: f: B Q2 z
( x% d) | n8 R! c! z5 Q! d3.误差散点对比图
- z0 c6 J# Y! M4 r
rzpt2z2a0do6403008114.png
( d* M* n* g6 x. A' O" I) d
Tips:可以任意选择两个误差衡量维度
) m5 f# `$ O1 l' D- q3 m6 dfigureplot_data_t1=Test_all(:,[1,5])';MarkerType={'s','o','pentagram','^','v'};for i = 1 : size(plot_data_t1,2) scatter(plot_data_t1(1,i),plot_data_t1(2,i),120,MarkerType{i},"filled") hold onendset(gca,"FontSize",12,"LineWidth",2)box offlegend box offlegend(str1,'Location','best')xlabel('MAE')ylabel('R2')grid on
: F4 J" `8 U! G3 M3 [7 S9 T- q D2 b Z: B4 Z- y- o
: }7 j+ ^. ~' `
1 F L/ e1 o2 a$ x6 I4.误差密度散点图
- D8 o4 q& T1 i/ r( V- Q! b
gawhobgospu6403008215.png
4 x' f6 S3 E1 h O" b- |
& C% ^& X2 w1 |0 X7 c6 [' [figure('Units', 'pixels', ... 'Position', [150 150 920 500]);for i=1:5 subplot(2,3,i) n=50; X=double(data_true); Y=double(data_pre_all(:,i)); M=polyfit(X,Y,1); Y1=polyval(M,X); XList=linspace(min(X),max(X),n); YList=linspace(min(Y),max(Y),n); [XMesh,YMesh]=meshgrid(XList,YList); F=ksdensity([X,Y],[XMesh(:),YMesh(:)]); ZMesh=reshape(F,size(XMesh)); H=interp2(double(XMesh),double(YMesh),double(ZMesh),X,Y); scatter(data_true,data_pre_all(:,i),35,'filled','CData',H,'MarkerFaceAlpha',.5); hold on plot(X(1:10:end),Y1(1:10:end),'--','LineWidth',1.2) hold on str_label=[str1{1,i},' ','R2=',num2str(Test_all(i,end))]; title(str_label) set(gca,"FontSize",10,"LineWidth",1.5) xlabel('true') ylabel('predict')end
) @' T7 z7 Q2 m9 U- w
5 J0 f% g* n5 L6 K& s) f' D. |. f+ d, V1 ~) u0 G
' R L( c0 _+ h3 K& ~
+ i" ]4 ]* }! v& O" M; I$ E9 u5.误差雷达图/ Q. g, e* V8 ~+ B& C% Q
l2cgn05tmz56403008315.png
$ B' x7 |* ]5 ]! E/ P. L0 T# Z
Tips:为了让图片更美观将多个维度评价指标进行归一化处理了
8 R0 B5 U" l( x2 f& L0 G b9 }4 |figure('Units', 'pixels', ... 'Position', [150 150 520 500]);Test_all1=Test_all./sum(Test_all); %把各个指标归一化到一个量纲Test_all1(:,end)=1-Test_all(:,end);RC=radarChart(Test_all1);str3={'A-MAE','A-MAPE','A-MSE','A-RMSE','1-R2'};RC.PropName=str3;RC.ClassName=str1;RC=RC.draw(); RC.legend();colorList=[78 101 155; 138 140 191; 184 168 207; 231 188 198; 253 207 158; 239 164 132; 182 118 108]./255;for n=1:RC.ClassNum RC.setPatchN(n,'Color',colorList(n,:),'MarkerFaceColor',colorList(n,:))end% C5 M3 @2 W# k6 ?% ]. q
本图参考了公众号:slandarer随笔8 H' D( C- s9 a6 j C F6 u& {
https://mp.weixin.qq.com/s/8Lu7yBs3cLlZk9bPStdgUA
. ~+ R" P" \2 B, T3 A' j- J' o" c/ \
调用函数
S" N: O- i! E: Eclassdef radarChart% @Author : slandarer% 公众号 : slandarer随笔% 知乎 : hikari* \+ v) n2 ]0 ^3 C. q
properties ax;arginList={'ClassName','PropName','Type'} XData;RTick=[];RLim=[];SepList=[1,1.2,1.5,2,2.5,3,4,5,6,8] Type='Line'; PropNum;ClassNum ClassName={}; PropName={};
; V4 a5 y1 u- |8 z {, X BC=[198,199,201; 38, 74, 96; 209, 80, 51; 241,174, 44; 12,13,15; 102,194,165; 252,140, 98; 142,160,204; 231,138,195; 166,217, 83; 255,217, 48; 229,196,148; 179,179,179]./255;7 j8 O" R7 {/ l; r& Q! i
% 句柄 ThetaTickHdl;RTickHdl;RLabelHdl;LgdHdl;PatchHdl;PropLabelHdl;BkgHdl end
% r8 O3 h* x. m/ {8 p2 Y; J/ h methods function obj=radarChart(varargin) if isa(varargin{1},'matlab.graphics.axis.Axes') obj.ax=varargin{1};varargin(1)=[]; else obj.ax=gca; end % 获取版本信息 tver=version('-release'); verMatlab=str2double(tver(1:4))+(abs(tver(5))-abs('a'))/2; if verMatlab hold on else hold(obj.ax,'on') end
# W! _; R! c6 n- S7 x$ B; o) q( H obj.XData=varargin{1};varargin(1)=[]; obj.PropNum=size(obj.XData,2); obj.ClassNum=size(obj.XData,1); obj.RLim=[0,max(obj.XData,[],[1,2])];
/ j! w& A9 O2 N % 获取其他信息 for i=1:2:(length(varargin)-1) tid=ismember(obj.arginList,varargin{i}); if any(tid) obj.(obj.arginList{tid})=varargin{i+1}; end end if isempty(obj.ClassName) for i=1:obj.ClassNum obj.ClassName{i}=['class ',num2str(i)]; end end if isempty(obj.PropName) for i=1:obj.PropNum obj.PropName{i}=['prop ',num2str(i)]; end end help radarChart end
. W. t& E6 g! Q: n. a* O function obj=draw(obj) obj.ax.XLim=[-1,1]; obj.ax.YLim=[-1,1]; obj.ax.XTick=[]; obj.ax.YTick=[]; obj.ax.XColor='none'; obj.ax.YColor='none'; obj.ax.PlotBoxAspectRatio=[1,1,1]; % 绘制背景圆形 tt=linspace(0,2*pi,200); obj.BkgHdl=fill(cos(tt),sin(tt),[252,252,252]./255,'EdgeColor',[200,200,200]./255,'LineWidth',1); % 绘制Theta刻度线 tn=linspace(0,2*pi,obj.PropNum+1);tn=tn(1:end-1); XTheta=[cos(tn);zeros([1,obj.PropNum]);nan([1,obj.PropNum])]; YTheta=[sin(tn);zeros([1,obj.PropNum]);nan([1,obj.PropNum])]; obj.ThetaTickHdl=plot(XTheta(:),YTheta(:),'Color',[200,200,200]./255,'LineWidth',1); % 绘制R刻度线 if isempty(obj.RTick) dr=diff(obj.RLim); sepR=dr./3; multiE=ceil(log(sepR)/log(10)); sepR=sepR.*10^(1-multiE); sepR=obj.SepList(find(sepR9 C+ `) Y+ {4 g- X
sepNum=floor(dr./sepR); obj.RTick=obj.RLim(1)+(0:sepNum).*sepR; if obj.RTick(end)~=obj.RLim(2) obj.RTick=[obj.RTick,obj.RLim]; end end obj.RLim(obj.RLim obj.RLim(obj.RLim>obj.RLim(2))=[];3 `) m- D5 L) s/ W! i0 ^3 f
XR=cos(tt').*(obj.RTick-obj.RLim(1))./diff(obj.RLim);XR=[XR;nan([1,length(obj.RTick)])]; YR=sin(tt').*(obj.RTick-obj.RLim(1))./diff(obj.RLim);YR=[YR;nan([1,length(obj.RTick)])]; obj.RTickHdl=plot(XR(:),YR(:),'Color',[200,200,200]./255,'LineWidth',1.1,'LineStyle','--');
& S9 a% ?1 B' j, s( _ % 绘制雷达图 for i=1:size(obj.XData,1) XP=cos(tn).*(obj.XData(i,:)-obj.RLim(1))./diff(obj.RLim); YP=sin(tn).*(obj.XData(i,:)-obj.RLim(1))./diff(obj.RLim); switch obj.Type case 'Line' obj.PatchHdl(i)=plot([XP,XP(1)],[YP,YP(1)],... 'Color',obj.BC(mod(i-1,size(obj.BC,1))+1,:),'Marker','o',... 'LineWidth',1.8,'MarkerFaceColor',obj.BC(mod(i-1,size(obj.BC,1))+1,:)); case 'Patch' obj.PatchHdl(i)=patch(XP,YP,obj.BC(mod(i-1,size(obj.BC,1))+1,:),... 'EdgeColor',obj.BC(mod(i-1,size(obj.BC,1))+1,:),'FaceAlpha',.2,... 'LineWidth',1.8);! w; W, M! ^. [/ x
end end
4 q) M0 J' k" ]9 P8 ^0 Q& v( @; n % 绘制R标签文本 tnr=(tn(1)+tn(2))/2; for i=1:length(obj.RTick) obj.RLabelHdl(i)=text(cos(tnr).*(obj.RTick(i)-obj.RLim(1))./diff(obj.RLim),... sin(tnr).*(obj.RTick(i)-obj.RLim(1))./diff(obj.RLim),... sprintf('%.2f',obj.RTick(i)),'FontName','Arial','FontSize',11); end6 L6 ^" q$ ?% w1 B# r( j
% 绘制属性标签 for i=1:obj.PropNum obj.PropLabelHdl(i)=text(cos(tn(i)).*1.1,sin(tn(i)).*1.1,obj.PropName{i},... 'FontSize',12,'HorizontalAlignment','center'); end
q+ s' i: h0 C end% ========================================================================= function obj=setBkg(obj,varargin) set(obj.BkgHdl,varargin{:}) end: F( \& \& y8 K0 W7 M7 b
% 绘制图例 function obj=legend(obj) obj.LgdHdl=legend([obj.PatchHdl],obj.ClassName,'FontSize',12,'Location','best'); end % 设置图例属性 function obj=setLegend(obj,varargin) set(obj.LgdHdl,varargin{:}) end$ O& k7 T6 F/ R. I5 N2 }
% 设置标签 function obj=setPropLabel(obj,varargin) for i=1:obj.PropNum set(obj.PropLabelHdl(i),varargin{:}) end end function obj=setRLabel(obj,varargin) for i=1:length(obj.RLabelHdl) set(obj.RLabelHdl(i),varargin{:}) end end
# E! ]/ n. x- Y9 O % 设置轴 function obj=setRTick(obj,varargin) set(obj.RTickHdl,varargin{:}) end function obj=setThetaTick(obj,varargin) set(obj.ThetaTickHdl,varargin{:}) end& x& s9 q3 Z% Q/ ]/ d5 t
% 设置patch属性 function obj=setPatchN(obj,N,varargin) set(obj.PatchHdl(N),varargin{:}) end end% @author : slandarer% 公众号 : slandarer随笔% 知乎 : hikariend
- b9 n; P( C3 c- o: { q
8 ]4 V; {3 `8 s/ z4 g( V3 [
+ V+ T! _4 O: p& V3 p9 U; S, v# }$ r: y. Z
- K/ |/ \% P& t" v8 b6.误差罗盘图* i( N! \7 b- ~- `3 q8 T
gd5qrhuzbzk6403008415.png
) P1 _! H b' a; h- z/ s2 Y$ z. \
figure('Units', 'pixels', ... 'Position', [150 150 920 600]);t = tiledlayout('flow','TileSpacing','compact');for i=1:length(Test_all(:,1))nexttileth1 = linspace(2*pi/length(Test_all(:,1))/2,2*pi-2*pi/length(Test_all(:,1))/2,length(Test_all(:,1)));r1 = Test_all(:,i)';[u1,v1] = pol2cart(th1,r1);M=compass(u1,v1);for j=1:length(Test_all(:,1)) M(j).LineWidth = 2; M(j).Color = colorList(j,:);. l1 p7 T/ | S) b5 ^! u6 a
end title(str2{i})set(gca,"FontSize",10,"LineWidth",1)end legend(M,str1,"FontSize",10,"LineWidth",1,'Box','off','Location','southoutside')
1 d; n$ @. c5 V4 W( R X; L# y1 R! b时序的和回归的算法比较也是类似的,【领取数据和代码方式】,在公众号【Lvy的口袋】(下方链接直接进行公众号)后台回复关键词【算法对比图】领取,还有什么比较合适的对比图可以私发小编看能不能复现奥~/ Y* @* R: z- t/ a4 Z" N% X- |
+ P( j6 c$ |. F( M) \" ]
5 I. q: x( ]9 K2 D- y2 L, F, ^! `6 f; d2 h; o; Y1 M5 E9 \
ps.合适的绘图之后可能会更新到工具箱中,全家桶大力更新中~早上车早实惠
L9 [' [1 h7 S0 P& \0 j4 `, ?3 } j: }
全家桶系列* J9 _3 M9 S ]# \0 w
一键打包公众号过去和未来所有的作品~持续更新中【获取方式】扫码获取或者点击链接
+ l4 J+ ^: V) xhttps://mbd.pub/o/bread/mbd-ZJabmJ9v
6 X0 O8 [3 ~8 R- z% u4 {/ V9 g V( o/ r7 Z0 U; D
3 n# W" U3 W1 }/ s1 U' P
n35e4iqkgst6403008515.png
' v/ O5 y: G- Z% Z- H( P' u. q( Q8 z; x7 C$ _! X
T! R6 D0 w' f! U
kdppfmk1y3b6403008615.png
! f; l3 Q1 k8 Q5 M' X, e$ r
END
# d. }+ c% s# p+ l* A
zuaiqzznwzg6403008715.png
$ x0 J9 L0 \5 ~) |0 c: p
- j3 f9 P F" j6 k2 H
* x( x8 j$ Z2 t& ~3 P
4tiwer2ffmc6403008815.jpg
7 Q: l! ]$ U! v2 d
长按二维码识别关注
# P: R$ N% C( j/ ]" r( m6 B1 L往期精彩回顾
e2 m6 r7 V0 B% O; r6 v推荐 | 神器系列大更新!|一键实现百种高效算法|轻松解决评价、降维、聚类、回归、分类、时序预测、多输入多输出问题推荐 | 一句命令实现神经网络超参数优化推荐 | 四种降维方法及可视化 流2群【756559035】 |
|